Memory Transformation Enhances Reinforcement Learning in Dynamic Environments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network ...

متن کامل

Adapting Reinforcement Learning For Trust: Effective Modeling in Dynamic Environments

In open multiagent systems, agents need to model their environments in order to identify trustworthy agents. Models of the environment should be accurate so that decisions about whom to interact with can be done soundly. Traditional trust models are based on modeling specific properties of agents, such as their expertise or reliability. Building those models requires too many prior interactions...

متن کامل

Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments

Little is known about the relationship between attention and learning during decision making. Using eye tracking and multivariate pattern analysis of fMRI data, we measured participants' dimensional attention as they performed a trial-and-error learning task in which only one of three stimulus dimensions was relevant for reward at any given time. Analysis of participants' choices revealed that ...

متن کامل

Decentralised Multi-Agent Reinforcement Learning for Dynamic and Uncertain Environments

Multi-Agent Reinforcement Learning (MARL) is a widely used technique for optimization in decentralised control problems. However, most applications of MARL are in static environments, and are not suitable when agent behaviour and environment conditions are dynamic and uncertain. Addressing uncertainty in such environments remains a challenging problem for MARL-based systems. The dynamic nature ...

متن کامل

Reinforcement Learning in Associative Memory

A reinforcement learning based associative memory structure (RLAM) is proposed. In this structure, a one-layer feed forward Palm [1] model is applied to the networks. Instead of batch training, an on-line learning method is used to construct the memory. The networks are trained interactively according to reinforcement learning, which is biologically plausible. The experiment results show that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neuroscience

سال: 2016

ISSN: 0270-6474,1529-2401

DOI: 10.1523/jneurosci.0763-16.2016